Forum Sains Indonesia



*

Artikel Sains

Aku Cinta ForSa

ForSa on FB  ForSa on Twitter

Pranala Luar

ShoutBox!

Last 10 Shouts:

 

ytridyrevsielixetuls

Pebruari 06, 2016, 07:05:18 PM
gigi bolong gak bisa disembuhin, mas. bisanya ditambal.

aji saka

Pebruari 03, 2016, 02:29:01 PM
Assallamuaekum,sahabat forum yg terkasih,,ane mau punya maslah,dgn gigi,,ane,,karena gigi ane pada bolong cuma gagian belakang nya,,,ada yg tau kali obat nya,,,terims,,aji bogor
 

Balya

Januari 31, 2016, 10:31:28 AM
Assalamualaykum, Post terbaru setelah sekian lama tidak muncul
 

Farabi

Januari 12, 2016, 10:14:20 PM
Itu bukan bisnis, emang murni mau nebus dosa, bang.
 

ytridyrevsielixetuls

Januari 12, 2016, 09:05:41 PM
wah saya baru dengar model bisnis ky itu. gimana caranya biar dapet profit?
 

Farabi

Januari 12, 2016, 05:29:09 PM
Mahasiswa yang seneng baca, dan punya android, kalian hubungi aku aja kalau butuh internet, aku nyediain pulsa gratis buat pemakai axis unlimited tiap bulan 50 rb. Kalian hubungi aku aja, aku punya dana untuk satu tahun, nanti kalian share sendiri ke 8 orang, insyaAllah berpahala. Aku yakin betul. A
 

Farabi

Januari 12, 2016, 07:43:58 AM
Kalau anda melihat FarabiPersonalNetword atau FarabiPersonalHotspot konek saja, itu gratis. Pass:123456789

TokoAlatLaboratorium

Januari 11, 2016, 02:10:21 PM
Butuh alat-alat lab?  :D
https://alatlab.org

fiand20

Januari 07, 2016, 09:41:10 AM
Selamat Pagi semua.. :) ;) :D

Show 50 latest
Pengertian koset: jika H adalah subgrup dari grup(G;o) dan adalah elemen dari G maka Ha = {h o alh∈ H} dapat diartikan sebagai koset kanan dari H dalam G, sedangkan aH = {a o hlh∈ H} disebut sebagai koset kiri dari H dalam G.

Teorema Lagrange: jika G adalah suatu grup berhingga dan S adalah subgrup dari G, maka order dari S akan membagi habis order dari G dan dapat dituliskan sebagai n(S)In(G) atau dengan kata lain subgrup akan membagi habis grupnya sehingga dapat ditulis sebagai (S)I(G).

Sebagai contoh:
carilah semua koset dari 4Z ≤ 2Z
di mana Z = {.....-2, -1, 0, 1, 2.......}
maka 2Z = {.....,-4, -2, 0, 2, 4,........} dan 4Z ={......-8, -4, 0, 4, 8............} karena yang akan dicari adalah  4Z ≤ 2Z maka yang akan jadi grup adalah 2Z  dan untuk pencarian koset yang digunakan adalah elemen dari 2Z yaitu  {........-4 ,-2, 0, 2, 4..........}.

Koset kanan
4Z + 0 = {.......-8, -4, 0, 4, 8........}
4Z + 2 = {.........-6, -2,2,6, 10.......}
4Z + 4 = {........-4, 0, 4, 8..............}

Koset kiri
0 + 4Z = {.......-8, -4, 0, 4, 8........}
2 + 4Z = {.........-6, -2,2,6, 10.......}
4 + 4Z = {........-4, 0, 4, 8..............}

Jadi kosetnya adalah 4Z+ 0, 4Z+2, 0+4Z,2+4Z. Hal ini terjadi karena pada koset 0+4Z dan 4+4Z terjadi pengulangan sehingga dapat dianggap sama, begitu juga pada koset kirinya.

Diskusikan lebih lanjut di forum
Copyright © 2006-2014 Forum Sains Indonesia