Berita: Selamat datang di ForSa! Forum diskusi seputar sains, teknologi dan pendidikan Indonesia.

Selamat datang, Pengunjung. Silahkan masuk atau mendaftar. Apakah anda lupa aktivasi email?


Masuk dengan nama pengguna, kata sandi dan lama sesi
Pengertian koset: jika H adalah subgrup dari grup(G;o) dan adalah elemen dari G maka Ha = {h o alh∈ H} dapat diartikan sebagai koset kanan dari H dalam G, sedangkan aH = {a o hlh∈ H} disebut sebagai koset kiri dari H dalam G.

Teorema Lagrange: jika G adalah suatu grup berhingga dan S adalah subgrup dari G, maka order dari S akan membagi habis order dari G dan dapat dituliskan sebagai n(S)In(G) atau dengan kata lain subgrup akan membagi habis grupnya sehingga dapat ditulis sebagai (S)I(G).

Sebagai contoh:
carilah semua koset dari 4Z ≤ 2Z
di mana Z = {.....-2, -1, 0, 1, 2.......}
maka 2Z = {.....,-4, -2, 0, 2, 4,........} dan 4Z ={......-8, -4, 0, 4, 8............} karena yang akan dicari adalah  4Z ≤ 2Z maka yang akan jadi grup adalah 2Z  dan untuk pencarian koset yang digunakan adalah elemen dari 2Z yaitu  {........-4 ,-2, 0, 2, 4..........}.

Koset kanan
4Z + 0 = {.......-8, -4, 0, 4, 8........}
4Z + 2 = {.........-6, -2,2,6, 10.......}
4Z + 4 = {........-4, 0, 4, 8..............}

Koset kiri
0 + 4Z = {.......-8, -4, 0, 4, 8........}
2 + 4Z = {.........-6, -2,2,6, 10.......}
4 + 4Z = {........-4, 0, 4, 8..............}

Jadi kosetnya adalah 4Z+ 0, 4Z+2, 0+4Z,2+4Z. Hal ini terjadi karena pada koset 0+4Z dan 4+4Z terjadi pengulangan sehingga dapat dianggap sama, begitu juga pada koset kirinya.

Diskusikan lebih lanjut di forum

Artikel Matematika Lainnya

Tanggapan *

Silahkan masuk atau daftar untuk memberikan tanggapan.