Forum Sains Indonesia




*

Artikel Sains

Aku Cinta ForSa

ForSa on FB  ForSa on Twitter

Pranala Luar

ShoutBox!

Last 10 Shouts:

Shadiq

Hari Ini jam 08:14:17 PM
Salam Kenal Semuanya   :D

cheaters123

Kemarin jam 08:58:55 AM
salam kena

presellya nur oktavia

April 15, 2014, 01:54:42 PM
butuh bantuan yang bisa ngerti scada buat tugas akhir,maaf saya baru disini salam kenal semua
 

Andrew96

April 09, 2014, 09:51:58 PM
info nya menarik smua ya.

Hikikomori

April 09, 2014, 02:59:13 PM
Salam kenal, saya ingin belajar pemrograman C++ melalui forum ini. Mohon bantuan kawan-kawan.
 :)

kaoskaki

April 08, 2014, 11:58:37 AM
salam kenal, klau mau belajar ic ke mana y??
tq

DomoRani

April 07, 2014, 09:48:39 PM
masih bingung gimana caranya mau nanya tentang soal mat ke forum ini -_-

zugite.balap

April 07, 2014, 03:34:36 AM
bingung sob, tugas kuliah bikin naskah dialog tentang pendidik/guru dan dimainkan 8 orang..
 

aisah nuhuyanan

April 06, 2014, 05:24:42 PM
akhirnya berkunjung jg di forsa....

chichara

April 04, 2014, 09:30:40 AM
pagi gan, ada forum yang spesifik bahas dunia perelektronikaan ga nih? i'm newbie  ;D

Show 50 latest

Penulis Topik: Studi Genetik Galaksi  (Dibaca 2514 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline reborn

  • Founder
  • Profesor
  • *****
  • Tulisan: 2232
  • IQ: 317
  • Gender: Pria
  • ForSa
    • Lihat Profil
Studi Genetik Galaksi
« pada: April 07, 2007, 07:24:07 AM »
Format PDF nya : http://www.aanda.org/images/stories/PressRelease/PRaa200615/praa200615.pdf

Galactic Bulge and Disc Stars Shown To Have Different Oxygen Abundances

Looking in detail at the composition of stars with ESO's VLT, astronomers are providing a fresh look at the history of our home galaxy, the Milky Way. They reveal that the central part of our Galaxy formed not only very quickly but also independently of the rest.

"For the first time, we have clearly established a 'genetic difference' between stars in the disc and the bulge of our Galaxy," said Manuela Zoccali, lead author of the paper presenting the results in the journal Astronomy and Astrophysics. "We infer from this that the bulge must have formed more rapidly than the disc, probably in less than a billion years and when the Universe was still very young."

The Milky Way is a spiral galaxy, having pinwheel-shaped arms of gas, dust, and stars lying in a flattened disc, and extending directly out from a spherical nucleus of stars in the central region. The spherical nucleus is called a bulge, because it bulges out from the disc. While the disc of our Galaxy is made up of stars of all ages, the bulge contains old stars dating from the time the galaxy formed, more than 10 billion years ago. Thus, studying the bulge allows astronomers to know more about how our Galaxy formed.

To do this, an international team of astronomers analysed in detail the chemical composition of 50 giant stars in four different areas of the sky towards the Galactic bulge. They made use of the FLAMES/UVES spectrograph on ESO's Very Large Telescope to obtain high-resolution spectra.

The chemical composition of stars carries the signature of the enrichment processes undergone by the interstellar matter up to the moment of their formation. It depends on the previous history of star formation and can thus be used to infer whether there is a 'genetic link' between different stellar groups. In particular, comparison between the abundance of oxygen and iron in stars is very illustrative. Oxygen is predominantly produced in the explosion of massive, short-lived stars (so-called Type II supernovae), while iron instead originates mostly in Type Ia supernovae [3], which can take much longer to develop. Comparing oxygen with iron abundances therefore gives insight on the star birth rate in the Milky Way's past.

"The larger size and iron-content coverage of our sample allows us to draw much more robust conclusions than were possible until now," said Aurelie Lecureur, from the Paris-Meudon Observatory (France) and co-author of the paper.

The astronomers clearly established that, for a given iron content, stars in the bulge possess more oxygen than their disc counterparts. This highlights a systematic, hereditary difference between bulge and disc stars.

"In other words, bulge stars did not originate in the disc and then migrate inward to build up the bulge but rather formed independently of the disc," said Zoccali. "Moreover, the chemical enrichment of the bulge, and hence its formation timescale, has been faster than that of the disc."

Comparisons with theoretical models indicate that the Galactic bulge must have formed in less than a billion years, most likely through a series of starbursts when the Universe was



 

Topik Terkait

  Subyek / Dimulai oleh Jawaban Tulisan terakhir
34 Jawaban
7985 Dilihat
Tulisan terakhir Mei 17, 2010, 08:45:33 AM
oleh alf
50 Jawaban
19645 Dilihat
Tulisan terakhir Pebruari 29, 2012, 08:41:31 PM
oleh Ammar18
6 Jawaban
2125 Dilihat
Tulisan terakhir Januari 09, 2011, 06:22:53 PM
oleh Huriah M Putra
8 Jawaban
1601 Dilihat
Tulisan terakhir Juni 15, 2011, 09:41:43 AM
oleh hanson
0 Jawaban
590 Dilihat
Tulisan terakhir Oktober 07, 2012, 11:23:33 PM
oleh randall

Copyright © 2006-2014 Forum Sains Indonesia