Forum Sains Indonesia




*

Artikel Sains

Aku Cinta ForSa

ForSa on FB  ForSa on Twitter

Pranala Luar

ShoutBox!

Last 10 Shouts:

 

nʇǝʌ∀

September 22, 2016, 04:25:04 PM
@ytridyrevsielixetuls

bantuin bikin thread. lagi sibuk jadi cuma sempat bikin copas dulu.
 

nʇǝʌ∀

September 22, 2016, 08:24:18 AM
Thanks, om reborn :)
kirain ga bakal direnewal forumnya.
dah disebarin beritanya  >:(
 

ytridyrevsielixetuls

September 21, 2016, 07:49:30 PM
oh BTW thanks ya om reborn :)
Wish You Luck!
 

ytridyrevsielixetuls

September 21, 2016, 07:42:55 PM
Hahaha ternyata udah di renewal sama om reborn pas jam 11 tadi! ;D

diem-diem direnewal forumnya.

*BERSULANG!*
 

nʇǝʌ∀

September 21, 2016, 09:30:32 AM
ForSa masih ada tapi expiration date tetap tanggal 21? Kita tunggu saja sampai pukul 18:23:19
sebab menurut data registrasi berakhir pada pukul 18:23
 

nʇǝʌ∀

September 21, 2016, 09:30:09 AM
setiap member yang pake siggy juga ngalamin. saya juga.
 

Monox D. I-Fly

September 20, 2016, 09:39:22 PM
Kok di beberapa post siggy saya nggak muncul ya? Padahal masih thread yang sama...

agaricback

September 20, 2016, 04:24:26 PM
Good, and its verry inportant and good article and the best Author
http://goo.gl/wIYCFb | http://goo.gl/jlzpc3 | http://goo.gl/R4KAoa | http://goo.gl/lpZJIc | http://goo.gl/XhMBQh
Tha
 

Monox D. I-Fly

September 19, 2016, 04:26:35 PM
ini soal "memento" personal saya, bukan soal backup forum... btw kl bisa post di thread Mathematicards dong, biar saya gk double post di postingan ke-2000  ;D
 

ytridyrevsielixetuls

September 19, 2016, 03:00:11 PM
kalo cara itu masih membutuhkan link ke ForSa dan anda mesti online utk mengaksesnya berarti sama saja dengan bookmark kan? dan bookmark tdk bisa menyelamatkan data dr website yg expired.

Show 50 latest

Penulis Topik: UTS 1 Mekanika #2  (Dibaca 1866 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline gtx

  • Mahasiswa
  • **
  • Tulisan: 41
  • IQ: 1
  • ForSa!
    • Lihat Profil
UTS 1 Mekanika #2
« pada: Oktober 18, 2012, 04:59:24 AM »
Sebuah sistem osilator harmonik satu dimensi dengan massa m=1,0 kg dan konstanta pegas k=10^4 N/m mengalami gaya redam F=-0,1v dan gaya penggerak/ gaya paksa F=10\cos\Omega t. Satuan gaya yang digunakan adalah newton.

a) Tuliskanlah persamaan diferensial bagi osilator tersebut.

b) Tentukanlah solusi khususnya.

c) Tentukan amplitudo osilasi untuk keadaan resonansi.



Offline gtx

  • Mahasiswa
  • **
  • Tulisan: 41
  • IQ: 1
  • ForSa!
    • Lihat Profil
Re:UTS 1 Mekanika #2
« Jawab #1 pada: November 10, 2012, 05:54:35 PM »
Solusi resmi :

a) Persamaan diferensial:

m\ddot{x}+b\dot{x}+kx=F_0\cos(\Omega t)\ \rightarrow\ \ddot{x}+0,1\dot{x}+10^{4}x=10\cos(\Omega t).

b) Bentuk umum solusi khusus

x=A\cos(10t+\varphi)

Konstanta A dan \varphi ditentukan sebagai berikut.

x=A\cos(\Omega t+\varphi),\ \dot{x}=-A\Omega\sin(\Omega t+\varphi),\ \ddot{x}=-A\Omega^2\cos(\Omega t+\varphi).

Masukkan ke dalam persamaan diferensial

10\cos(\Omega t)=\ddot{x}+10^{-1}\dot{x}+10^4x

=-A\Omega^2\cos(\Omega t+\varphi)-10^{-1}A\Omega\sin(\Omega t+\varphi)+10^4A\cos(\Omega t+\varphi)

=(10^4-\Omega^2)A\{\cos(\Omega t)\cos\varphi-\sin(\Omega t)\sin\varphi\}-10^{-1}A\Omega\{\sin(\Omega t)\cos\varphi+\cos(\Omega t)\sin\varphi\}

=A\cos(\Omega t)[(10^4-\Omega^2)\cos\varphi-10^{-1}\Omega\sin\varphi]+A\sin(\Omega t)[-(10^4-\Omega^2)\sin\varphi-10^{-1}\Omega\cos\varphi]

Samakan bagian \cos(\Omega t) ruas kiri dan ruas kanan, demikian pula bagian \sin(\Omega t).

10=A[(10^4-\Omega^2)\cos\varphi-10^{-1}\Omega\sin\varphi]=-A[(\Omega^2-10^4)\cos\varphi+10^{-1}\Omega\sin\varphi]

0=[(10^{4}-\Omega^2)\sin\varphi+10^{-1}\Omega\cos\varphi]

\rightarrow\ \tan\varphi=\frac{10^{-1}\Omega}{\Omega^2-10^4},\ \sin\varphi=\frac{10^{-1}\Omega}{\sqrt{(\Omega^2-10^4)^2+10^{-2}\Omega^2}},\ \cos\varphi=\frac{\Omega^2-10^4}{\sqrt{(\Omega^2-10^4)^2+10^{-2}\Omega^2}}

\rightarrow\ A=-\frac{10}{(\Omega^2-10^4)\cos\varphi+10^{-1}\Omega\sin\varphi}=-\frac{10}{\sqrt{(\Omega^2-10^4)^2+10^{-2}\Omega^2}}

Jadi, solusi khususnya

x(t)=A\cos(\Omega t+\varphi)=-\frac{10\cos(\Omega t+\varphi)}{\sqrt{(\Omega^2-10^4)^2+10^{-2}\Omega^2}},\ \varphi=\tan^{-1}\frac{10^{-1}\Omega}{\Omega^2-10^4}

Amplitudo osilasi berkaitan dengan pemilihan \Omega yang memberikan nilai amplitudo maksimum (penyebut pada solusi khusus minimum):

A_{\text{maks}}\ \leftrightarrow\ \Omega^2=10000

\rightarrow\ A_{\text{maks}}=\frac{10}{\sqrt{10^{-2}\times 10^4}}=1 m.

 

Topik Terkait

  Subyek / Dimulai oleh Jawaban Tulisan terakhir
3 Jawaban
1880 Dilihat
Tulisan terakhir Oktober 29, 2012, 05:50:43 PM
oleh biobio
1 Jawaban
1531 Dilihat
Tulisan terakhir November 14, 2012, 10:26:21 PM
oleh gtx
0 Jawaban
1517 Dilihat
Tulisan terakhir Oktober 18, 2012, 05:13:05 AM
oleh gtx
1 Jawaban
1604 Dilihat
Tulisan terakhir Oktober 18, 2012, 02:30:12 PM
oleh mhyworld
0 Jawaban
1556 Dilihat
Tulisan terakhir Oktober 18, 2012, 05:25:47 AM
oleh gtx

Copyright © 2006-2014 Forum Sains Indonesia