Forum Sains Indonesia




*

Artikel Sains

Aku Cinta ForSa

ForSa on FB  ForSa on Twitter

Pranala Luar

ShoutBox!

Last 10 Shouts:

 

Monox D. I-Fly

Mei 02, 2016, 10:28:53 AM
ada apa cocack?

Andara Fitriyanti

April 30, 2016, 06:43:21 PM
Diskusi apa nich yg lg rame? ;)
 

cocack

April 27, 2016, 07:12:57 PM
ada yang on di forum matematika

Ebii

April 25, 2016, 10:26:04 AM
guysss gimana sih caranya posting
 

nʇǝʌ∀

April 17, 2016, 10:48:08 AM
@ytridyrevsielixetul

mang kenapa lagi sih? harga minyak anjlok plus kredit macet sektor properti?

*dobel ruginya*

sinjo

April 12, 2016, 09:15:18 PM
 

ytridyrevsielixetuls

April 02, 2016, 05:01:07 PM
benarkah tahun ini dunia akan mengalami resesi ekonomi besar-besaran?

tdccrew666

Maret 31, 2016, 09:35:21 PM
misi boosss
mau minta tolong untuk data mining ada metode "1R Holte" itu metode nya bagaimana ya?? kalau ada sekalian contoh kasus,,, referensi jurnal juga gak papa,,,,,, :) :)

deviana_putri99

Maret 30, 2016, 08:56:25 PM
 :)
 

nʇǝʌ∀

Maret 30, 2016, 04:35:18 PM
@jhonabundance
@rodadua


dimohon tidak beriklan di shoutbox. terma kasih.

@endahsulis20

maksudnya tidak bisa posting gimana? apakah tidak ada captcha?

Show 50 latest

Penulis Topik: Penurunan rumus limit -> tak hingga  (Dibaca 19621 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline Takagi Fujimaru

  • Profesor
  • *****
  • Tulisan: 921
  • IQ: 47
  • Gender: Pria
  • Falcon is flying...
    • Lihat Profil
Penurunan rumus limit -> tak hingga
« pada: Juni 30, 2010, 03:29:41 PM »
Di SMA kelas XI tentu sudah diajarkan materi limit. Nah, aq punya penurunan rumus limit mendekati tak hingga. Let's check it out.

Pertama2, kita lihat flashback tentang materi limit mendekati tak hingga.
1. \lim_{x\to\infty}ax=\infty
2. \lim_{x\to\infty}\frac ax=0
3. \lim_{x\to\infty}a^x=\infty
4. \lim_{x\to\infty}\left(\frac ab\right)^x= \left\{ {\text{\infty , a>b}\atop<br />\text{0 , a<b}} \right.
di mana a dan b adalah konstanta.

Nah, sekarang masuk 'rumus praktis'-nya.
1. Bentuk \frac \infty \infty

\lim_{x\to\infty} \frac {ax^m + b}{cx^n + d}= \left\{ {\text{\infty , m>n}\atop<br />\text{0 , m<n}} \right.

\lim_{x\to\infty} \frac {ax^m + b}{cx^m + d}=\frac ac

Sepertinya untuk dua rumus ini tidak butuh penurunan kan? ;D ;D

2. Bentuk \sqrt{\infty} - \sqrt{\infty}

\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r}=\left\{ {\text{\infty , a>p}\atop<br />\text{-\infty , a<p}}\right.

Untuk a=p, maka: \lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{ax^2 + qx +r}=\frac{b-q}{2\sqrt{a}}. Darimana nilai itu diperoleh? Mari kita lihat penurunannya. Jika diselesaikan secara manual, maka kita perlu mengalikan dengan sekawannya. Let's see...

\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r} * \frac{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}

=\lim_{x\to\infty}\frac{ax^2 + bx + c - \left(px^2 + qx +r\right)}<br />{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}

=\lim_{x\to\infty}\frac{\left(a-p\right)x^2 + \left(b-q\right)x + \left(c-r\right)}<br />{\sqrt{x^2\left(a + \frac b{x} + \frac c{x^2}\right)} + \sqrt{x^2\left(p + \frac q{x} + \frac r{x^2}\right)}}

=\lim_{x\to\infty}\frac{x \left{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x} \right}}<br />{x\sqrt{a + \frac b{x} + \frac c{x^2}} + x\sqrt{p + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{\cancel{x} \left{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x} \right}}<br />{\cancel{x}\left(\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}\right)}

=\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}}

Nah, berdasarkan flashback poin dua, akan di dapat:
\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}}=\left\{ {\text{\infty , a>p}\atop<br />\text{-\infty , a<p}}\right.

Untuk a=p maka:
\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{ + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{\left(a-a\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{a + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{0*x + \left(b-q\right) + \frac{c-r}{x}}{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{a + \frac q{x} + \frac r{x^2}}}

=\frac{b-q}{2\sqrt{a}}

Dengan cara yang sama, diperoleh:

\lim_{x\to\infty}\sqrt{ax^m + bx^n + c} - \sqrt{ax^m + qx^n +r}=\frac {b-q}{2\sqrt{a}} di mana m=2n dan m>0

Terkadang, muncul soal seperti ini:

\lim_{x\to\infty}\left(ax +b\right) - \sqrt{px^2 + qx +r}=...

Caranya, agar berlaku rumus2 di atas, lakukan langkah seperti ini:

\lim_{x\to\infty}\left(ax +b\right) - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{\left(ax +b\right)^2} - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{ax^2 + \left(2ab\right)x + \left(b^2\right)} - \sqrt{ax^m + qx^n +r}

Nah, jika sudah dalam bentuk seperti ini, tinggal 'rumus-masuk-jadi' kan? ;D ;D

Yah, ini dulu materi yg kita bahas. Semoga bermanfaat...   ::) ::)

(Pengalaman pertama nulis MimeTex. Nulis gini aja makan waktu 1 jam... :D :D)
« Edit Terakhir: Juni 30, 2010, 03:32:21 PM oleh Takagi Fujimaru »


Belajar itu buat cari ilmu, bukan cari nilai.

Fachni Rosyadi

  • Pengunjung
Re: Penurunan rumus limit -> tak hingga
« Jawab #1 pada: April 04, 2011, 06:19:25 PM »
Gimana rumusnya kalo bentuk limitnya begini:

\lim_{x\to\infty}\ (\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{px^3+qx^2+rx+s})

dengan a=p?

Offline mhyworld

  • Profesor
  • *****
  • Tulisan: 1503
  • IQ: 50
  • Gender: Pria
  • .start with the end in mind.
    • Lihat Profil
Re:Penurunan rumus limit -> tak hingga
« Jawab #2 pada: Desember 08, 2011, 06:06:26 PM »
3.

ini hanya berlaku untuk a lebih dari 1.
jika a=1, hasilnya = 1
jika -1 < a < 1, hasilnya = 0.
jika a = -1, hasilnya indefinite (fluktuasi antara -1 dan 1) http://www.wolframalpha.com/input/?i=%28-1%29^x
jika a < -1, hasilnya indefinite (fluktuasi antara -~ dan ~)
once we have eternity, everything else can wait

Offline trfrm

  • Mahasiswa
  • **
  • Tulisan: 21
  • IQ: 2
    • Lihat Profil
Re:Penurunan rumus limit -> tak hingga
« Jawab #3 pada: Maret 02, 2013, 09:27:38 PM »
1. \lim_{x\to\infty}ax=\infty
2. \lim_{x\to\infty}\frac ax=0
3. \lim_{x\to\infty}a^x=\infty
4. \lim_{x\to\infty}\left(\frac ab\right)^x= \left\{ {\text{\infty , a>b}\atop<br />\text{0 , a<b}} \right.
di mana a dan b adalah konstanta.

Permisi ... .  Sekedar koreksi saja ... .

Mungkin yang dimaksud adalah sebagai berikut ... .

Nomor 1

\lim_{x\rightarrow\infty}(ax)=\left\{\begin{array}{ll}\infty&\textrm{jika}\,a>0\\0&\textrm{jika}\,a=0\\-\infty&\textrm{jika}\,a<0\end{array}\right. ... .


Nomor 3

\lim_{x\rightarrow\infty}a^x=\left\{\begin{array}{ll}\infty&\textrm{jika}\,a>1\\\\1&\textrm{jika}\,a=1\\0&\textrm{jika}\,-1<a<1\end{array}\right. ... .

Apabila a\leq-1, mungkin nilai  \lim_{x\rightarrow\infty}a^x tidak terdefinisi ... .

Maaf kalau salah ... .  :(

 

Topik Terkait

  Subyek / Dimulai oleh Jawaban Tulisan terakhir
Limit Trigonometri

Dimulai oleh Mtk Kerajaan Mataram Matematika

11 Jawaban
9988 Dilihat
Tulisan terakhir April 18, 2010, 10:35:16 PM
oleh PocongSains
22 Jawaban
20555 Dilihat
Tulisan terakhir Mei 11, 2010, 05:52:15 PM
oleh given
73 Jawaban
22908 Dilihat
Tulisan terakhir Juni 02, 2010, 01:41:28 PM
oleh galihutomo
19 Jawaban
14891 Dilihat
Tulisan terakhir Oktober 04, 2010, 08:23:27 AM
oleh The Houw Liong
0 Jawaban
758 Dilihat
Tulisan terakhir Januari 30, 2015, 07:14:54 PM
oleh Risma098

Copyright © 2006-2014 Forum Sains Indonesia