Forum Sains Indonesia




*

Artikel Sains

Aku Cinta ForSa

ForSa on FB  ForSa on Twitter

Pranala Luar

ShoutBox!

Last 10 Shouts:

akbarsena26

September 26, 2016, 03:23:51 PM
ada yang bisa kasih lay out robot line follower analog gak? yang langsung bisa di print
 

ytridyrevsielixetuls

September 26, 2016, 01:04:43 PM
koneksi gwa bermasalah disaat gwa mau submit post ke 666... hihihi kebetulan kah?
 

ytridyrevsielixetuls

September 26, 2016, 12:22:58 PM
1 dulu ya? :) trit copas juga.

soalnya sy juga sibuk.
 

nʇǝʌ∀

September 22, 2016, 04:25:04 PM
@ytridyrevsielixetuls

bantuin bikin thread. lagi sibuk jadi cuma sempat bikin copas dulu.
 

nʇǝʌ∀

September 22, 2016, 08:24:18 AM
Thanks, om reborn :)
kirain ga bakal direnewal forumnya.
dah disebarin beritanya  >:(
 

ytridyrevsielixetuls

September 21, 2016, 07:49:30 PM
oh BTW thanks ya om reborn :)
Wish You Luck!
 

ytridyrevsielixetuls

September 21, 2016, 07:42:55 PM
Hahaha ternyata udah di renewal sama om reborn pas jam 11 tadi! ;D

diem-diem direnewal forumnya.

*BERSULANG!*
 

nʇǝʌ∀

September 21, 2016, 09:30:32 AM
ForSa masih ada tapi expiration date tetap tanggal 21? Kita tunggu saja sampai pukul 18:23:19
sebab menurut data registrasi berakhir pada pukul 18:23
 

nʇǝʌ∀

September 21, 2016, 09:30:09 AM
setiap member yang pake siggy juga ngalamin. saya juga.
 

Monox D. I-Fly

September 20, 2016, 09:39:22 PM
Kok di beberapa post siggy saya nggak muncul ya? Padahal masih thread yang sama...

Show 50 latest

Penulis Topik: Penurunan rumus limit -> tak hingga  (Dibaca 20094 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline Takagi Fujimaru

  • Profesor
  • *****
  • Tulisan: 921
  • IQ: 47
  • Gender: Pria
  • Falcon is flying...
    • Lihat Profil
Penurunan rumus limit -> tak hingga
« pada: Juni 30, 2010, 03:29:41 PM »
Di SMA kelas XI tentu sudah diajarkan materi limit. Nah, aq punya penurunan rumus limit mendekati tak hingga. Let's check it out.

Pertama2, kita lihat flashback tentang materi limit mendekati tak hingga.
1. \lim_{x\to\infty}ax=\infty
2. \lim_{x\to\infty}\frac ax=0
3. \lim_{x\to\infty}a^x=\infty
4. \lim_{x\to\infty}\left(\frac ab\right)^x= \left\{ {\text{\infty , a>b}\atop<br />\text{0 , a<b}} \right.
di mana a dan b adalah konstanta.

Nah, sekarang masuk 'rumus praktis'-nya.
1. Bentuk \frac \infty \infty

\lim_{x\to\infty} \frac {ax^m + b}{cx^n + d}= \left\{ {\text{\infty , m>n}\atop<br />\text{0 , m<n}} \right.

\lim_{x\to\infty} \frac {ax^m + b}{cx^m + d}=\frac ac

Sepertinya untuk dua rumus ini tidak butuh penurunan kan? ;D ;D

2. Bentuk \sqrt{\infty} - \sqrt{\infty}

\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r}=\left\{ {\text{\infty , a>p}\atop<br />\text{-\infty , a<p}}\right.

Untuk a=p, maka: \lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{ax^2 + qx +r}=\frac{b-q}{2\sqrt{a}}. Darimana nilai itu diperoleh? Mari kita lihat penurunannya. Jika diselesaikan secara manual, maka kita perlu mengalikan dengan sekawannya. Let's see...

\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r} * \frac{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}

=\lim_{x\to\infty}\frac{ax^2 + bx + c - \left(px^2 + qx +r\right)}<br />{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}

=\lim_{x\to\infty}\frac{\left(a-p\right)x^2 + \left(b-q\right)x + \left(c-r\right)}<br />{\sqrt{x^2\left(a + \frac b{x} + \frac c{x^2}\right)} + \sqrt{x^2\left(p + \frac q{x} + \frac r{x^2}\right)}}

=\lim_{x\to\infty}\frac{x \left{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x} \right}}<br />{x\sqrt{a + \frac b{x} + \frac c{x^2}} + x\sqrt{p + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{\cancel{x} \left{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x} \right}}<br />{\cancel{x}\left(\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}\right)}

=\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}}

Nah, berdasarkan flashback poin dua, akan di dapat:
\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}}=\left\{ {\text{\infty , a>p}\atop<br />\text{-\infty , a<p}}\right.

Untuk a=p maka:
\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{ + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{\left(a-a\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{a + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{0*x + \left(b-q\right) + \frac{c-r}{x}}{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{a + \frac q{x} + \frac r{x^2}}}

=\frac{b-q}{2\sqrt{a}}

Dengan cara yang sama, diperoleh:

\lim_{x\to\infty}\sqrt{ax^m + bx^n + c} - \sqrt{ax^m + qx^n +r}=\frac {b-q}{2\sqrt{a}} di mana m=2n dan m>0

Terkadang, muncul soal seperti ini:

\lim_{x\to\infty}\left(ax +b\right) - \sqrt{px^2 + qx +r}=...

Caranya, agar berlaku rumus2 di atas, lakukan langkah seperti ini:

\lim_{x\to\infty}\left(ax +b\right) - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{\left(ax +b\right)^2} - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{ax^2 + \left(2ab\right)x + \left(b^2\right)} - \sqrt{ax^m + qx^n +r}

Nah, jika sudah dalam bentuk seperti ini, tinggal 'rumus-masuk-jadi' kan? ;D ;D

Yah, ini dulu materi yg kita bahas. Semoga bermanfaat...   ::) ::)

(Pengalaman pertama nulis MimeTex. Nulis gini aja makan waktu 1 jam... :D :D)
« Edit Terakhir: Juni 30, 2010, 03:32:21 PM oleh Takagi Fujimaru »


Belajar itu buat cari ilmu, bukan cari nilai.

Fachni Rosyadi

  • Pengunjung
Re: Penurunan rumus limit -> tak hingga
« Jawab #1 pada: April 04, 2011, 06:19:25 PM »
Gimana rumusnya kalo bentuk limitnya begini:

\lim_{x\to\infty}\ (\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{px^3+qx^2+rx+s})

dengan a=p?

Offline mhyworld

  • Profesor
  • *****
  • Tulisan: 1503
  • IQ: 50
  • Gender: Pria
  • .start with the end in mind.
    • Lihat Profil
Re:Penurunan rumus limit -> tak hingga
« Jawab #2 pada: Desember 08, 2011, 06:06:26 PM »
3.

ini hanya berlaku untuk a lebih dari 1.
jika a=1, hasilnya = 1
jika -1 < a < 1, hasilnya = 0.
jika a = -1, hasilnya indefinite (fluktuasi antara -1 dan 1) http://www.wolframalpha.com/input/?i=%28-1%29^x
jika a < -1, hasilnya indefinite (fluktuasi antara -~ dan ~)
once we have eternity, everything else can wait

Offline trfrm

  • Mahasiswa
  • **
  • Tulisan: 21
  • IQ: 2
    • Lihat Profil
Re:Penurunan rumus limit -> tak hingga
« Jawab #3 pada: Maret 02, 2013, 09:27:38 PM »
1. \lim_{x\to\infty}ax=\infty
2. \lim_{x\to\infty}\frac ax=0
3. \lim_{x\to\infty}a^x=\infty
4. \lim_{x\to\infty}\left(\frac ab\right)^x= \left\{ {\text{\infty , a>b}\atop<br />\text{0 , a<b}} \right.
di mana a dan b adalah konstanta.

Permisi ... .  Sekedar koreksi saja ... .

Mungkin yang dimaksud adalah sebagai berikut ... .

Nomor 1

\lim_{x\rightarrow\infty}(ax)=\left\{\begin{array}{ll}\infty&\textrm{jika}\,a>0\\0&\textrm{jika}\,a=0\\-\infty&\textrm{jika}\,a<0\end{array}\right. ... .


Nomor 3

\lim_{x\rightarrow\infty}a^x=\left\{\begin{array}{ll}\infty&\textrm{jika}\,a>1\\\\1&\textrm{jika}\,a=1\\0&\textrm{jika}\,-1<a<1\end{array}\right. ... .

Apabila a\leq-1, mungkin nilai  \lim_{x\rightarrow\infty}a^x tidak terdefinisi ... .

Maaf kalau salah ... .  :(

 

Topik Terkait

  Subyek / Dimulai oleh Jawaban Tulisan terakhir
Limit Trigonometri

Dimulai oleh Mtk Kerajaan Mataram Matematika

11 Jawaban
10823 Dilihat
Tulisan terakhir April 18, 2010, 10:35:16 PM
oleh PocongSains
22 Jawaban
22766 Dilihat
Tulisan terakhir Mei 11, 2010, 05:52:15 PM
oleh given
73 Jawaban
24472 Dilihat
Tulisan terakhir Juni 02, 2010, 01:41:28 PM
oleh galihutomo
19 Jawaban
16065 Dilihat
Tulisan terakhir Oktober 04, 2010, 08:23:27 AM
oleh The Houw Liong
0 Jawaban
1015 Dilihat
Tulisan terakhir Januari 30, 2015, 07:14:54 PM
oleh Risma098

Copyright © 2006-2014 Forum Sains Indonesia