Forum Sains Indonesia




*

Artikel Sains

Aku Cinta ForSa

ForSa on FB  ForSa on Twitter

Pranala Luar

ShoutBox!

Last 10 Shouts:

gagas3rd

Juli 22, 2016, 10:28:05 PM
CV AVR saya kesulitan dalam pembuatan program

gagas3rd

Juli 22, 2016, 10:27:34 PM
boleh taya AVR

RECDGE

Juli 22, 2016, 01:37:17 PM
min cara buat iklan lowongan di forsa gmn yah?saya tidak bisa dikarenakan pranala luar itu maksutnya apa

CHECHEN

Juli 21, 2016, 04:58:50 PM
Mini PC dan Thin Client FUJITECH INDONESIA

#fujitech
OFFICIAL WEBSITE:
www.pclink.co.id

CHECHEN

Juli 21, 2016, 04:58:10 PM
Mini PC dan Thin Client FUJITECH INDONESIA

Sebuah persembahan teknologi yang dapat bermanfaat untuk mencerdaskan pendidikan anak bangsa, FUJITECH INDONESIA menghadirkan THIN CLIENT dan MINI PC yang sangat cocok sekali untuk LAB Komputer Sekolah, Perusahaan PIALANG, Future Trading , Pengganti PC u
 

loser1942

Juli 20, 2016, 06:42:34 PM
Hello guys, same question, apakah forum masih aktif?

RECDGE

Juli 15, 2016, 10:38:26 AM
apakah forum ini masih aktif?

rakakakuk

Juni 14, 2016, 02:35:17 PM
Glucoberry is a product of Milk for beauty that is processed with modern technology, as well as of processing got the radar directly from the beauty experts around the world.
http://www.obatawetmudaalami.com/obat-kulit-kering-saat-puasa/
 

ahmad m.s

Juni 03, 2016, 04:21:51 PM
GOD!! dah lama ga nongol disini

nice to meet you gaesss~~~~~

Show 50 latest

Penulis Topik: Penurunan rumus limit -> tak hingga  (Dibaca 19895 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline Takagi Fujimaru

  • Profesor
  • *****
  • Tulisan: 921
  • IQ: 47
  • Gender: Pria
  • Falcon is flying...
    • Lihat Profil
Penurunan rumus limit -> tak hingga
« pada: Juni 30, 2010, 03:29:41 PM »
Di SMA kelas XI tentu sudah diajarkan materi limit. Nah, aq punya penurunan rumus limit mendekati tak hingga. Let's check it out.

Pertama2, kita lihat flashback tentang materi limit mendekati tak hingga.
1. \lim_{x\to\infty}ax=\infty
2. \lim_{x\to\infty}\frac ax=0
3. \lim_{x\to\infty}a^x=\infty
4. \lim_{x\to\infty}\left(\frac ab\right)^x= \left\{ {\text{\infty , a>b}\atop<br />\text{0 , a<b}} \right.
di mana a dan b adalah konstanta.

Nah, sekarang masuk 'rumus praktis'-nya.
1. Bentuk \frac \infty \infty

\lim_{x\to\infty} \frac {ax^m + b}{cx^n + d}= \left\{ {\text{\infty , m>n}\atop<br />\text{0 , m<n}} \right.

\lim_{x\to\infty} \frac {ax^m + b}{cx^m + d}=\frac ac

Sepertinya untuk dua rumus ini tidak butuh penurunan kan? ;D ;D

2. Bentuk \sqrt{\infty} - \sqrt{\infty}

\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r}=\left\{ {\text{\infty , a>p}\atop<br />\text{-\infty , a<p}}\right.

Untuk a=p, maka: \lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{ax^2 + qx +r}=\frac{b-q}{2\sqrt{a}}. Darimana nilai itu diperoleh? Mari kita lihat penurunannya. Jika diselesaikan secara manual, maka kita perlu mengalikan dengan sekawannya. Let's see...

\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{ax^2 + bx + c} - \sqrt{px^2 + qx +r} * \frac{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}

=\lim_{x\to\infty}\frac{ax^2 + bx + c - \left(px^2 + qx +r\right)}<br />{\sqrt{ax^2 + bx + c} + \sqrt{px^2 + qx +r}}

=\lim_{x\to\infty}\frac{\left(a-p\right)x^2 + \left(b-q\right)x + \left(c-r\right)}<br />{\sqrt{x^2\left(a + \frac b{x} + \frac c{x^2}\right)} + \sqrt{x^2\left(p + \frac q{x} + \frac r{x^2}\right)}}

=\lim_{x\to\infty}\frac{x \left{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x} \right}}<br />{x\sqrt{a + \frac b{x} + \frac c{x^2}} + x\sqrt{p + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{\cancel{x} \left{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x} \right}}<br />{\cancel{x}\left(\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}\right)}

=\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}}

Nah, berdasarkan flashback poin dua, akan di dapat:
\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{p + \frac q{x} + \frac r{x^2}}}=\left\{ {\text{\infty , a>p}\atop<br />\text{-\infty , a<p}}\right.

Untuk a=p maka:
\lim_{x\to\infty}\frac{\left(a-p\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{ + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{\left(a-a\right)x + \left(b-q\right) + \frac{c-r}{x}}<br />{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{a + \frac q{x} + \frac r{x^2}}}

=\lim_{x\to\infty}\frac{0*x + \left(b-q\right) + \frac{c-r}{x}}{\sqrt{a + \frac b{x} + \frac c{x^2}} + \sqrt{a + \frac q{x} + \frac r{x^2}}}

=\frac{b-q}{2\sqrt{a}}

Dengan cara yang sama, diperoleh:

\lim_{x\to\infty}\sqrt{ax^m + bx^n + c} - \sqrt{ax^m + qx^n +r}=\frac {b-q}{2\sqrt{a}} di mana m=2n dan m>0

Terkadang, muncul soal seperti ini:

\lim_{x\to\infty}\left(ax +b\right) - \sqrt{px^2 + qx +r}=...

Caranya, agar berlaku rumus2 di atas, lakukan langkah seperti ini:

\lim_{x\to\infty}\left(ax +b\right) - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{\left(ax +b\right)^2} - \sqrt{px^2 + qx +r}

=\lim_{x\to\infty}\sqrt{ax^2 + \left(2ab\right)x + \left(b^2\right)} - \sqrt{ax^m + qx^n +r}

Nah, jika sudah dalam bentuk seperti ini, tinggal 'rumus-masuk-jadi' kan? ;D ;D

Yah, ini dulu materi yg kita bahas. Semoga bermanfaat...   ::) ::)

(Pengalaman pertama nulis MimeTex. Nulis gini aja makan waktu 1 jam... :D :D)
« Edit Terakhir: Juni 30, 2010, 03:32:21 PM oleh Takagi Fujimaru »


Belajar itu buat cari ilmu, bukan cari nilai.

Fachni Rosyadi

  • Pengunjung
Re: Penurunan rumus limit -> tak hingga
« Jawab #1 pada: April 04, 2011, 06:19:25 PM »
Gimana rumusnya kalo bentuk limitnya begini:

\lim_{x\to\infty}\ (\sqrt[3]{ax^3+bx^2+cx+d}-\sqrt[3]{px^3+qx^2+rx+s})

dengan a=p?

Offline mhyworld

  • Profesor
  • *****
  • Tulisan: 1503
  • IQ: 50
  • Gender: Pria
  • .start with the end in mind.
    • Lihat Profil
Re:Penurunan rumus limit -> tak hingga
« Jawab #2 pada: Desember 08, 2011, 06:06:26 PM »
3.

ini hanya berlaku untuk a lebih dari 1.
jika a=1, hasilnya = 1
jika -1 < a < 1, hasilnya = 0.
jika a = -1, hasilnya indefinite (fluktuasi antara -1 dan 1) http://www.wolframalpha.com/input/?i=%28-1%29^x
jika a < -1, hasilnya indefinite (fluktuasi antara -~ dan ~)
once we have eternity, everything else can wait

Offline trfrm

  • Mahasiswa
  • **
  • Tulisan: 21
  • IQ: 2
    • Lihat Profil
Re:Penurunan rumus limit -> tak hingga
« Jawab #3 pada: Maret 02, 2013, 09:27:38 PM »
1. \lim_{x\to\infty}ax=\infty
2. \lim_{x\to\infty}\frac ax=0
3. \lim_{x\to\infty}a^x=\infty
4. \lim_{x\to\infty}\left(\frac ab\right)^x= \left\{ {\text{\infty , a>b}\atop<br />\text{0 , a<b}} \right.
di mana a dan b adalah konstanta.

Permisi ... .  Sekedar koreksi saja ... .

Mungkin yang dimaksud adalah sebagai berikut ... .

Nomor 1

\lim_{x\rightarrow\infty}(ax)=\left\{\begin{array}{ll}\infty&\textrm{jika}\,a>0\\0&\textrm{jika}\,a=0\\-\infty&\textrm{jika}\,a<0\end{array}\right. ... .


Nomor 3

\lim_{x\rightarrow\infty}a^x=\left\{\begin{array}{ll}\infty&\textrm{jika}\,a>1\\\\1&\textrm{jika}\,a=1\\0&\textrm{jika}\,-1<a<1\end{array}\right. ... .

Apabila a\leq-1, mungkin nilai  \lim_{x\rightarrow\infty}a^x tidak terdefinisi ... .

Maaf kalau salah ... .  :(

 

Topik Terkait

  Subyek / Dimulai oleh Jawaban Tulisan terakhir
Limit Trigonometri

Dimulai oleh Mtk Kerajaan Mataram Matematika

11 Jawaban
10616 Dilihat
Tulisan terakhir April 18, 2010, 10:35:16 PM
oleh PocongSains
22 Jawaban
22404 Dilihat
Tulisan terakhir Mei 11, 2010, 05:52:15 PM
oleh given
73 Jawaban
23758 Dilihat
Tulisan terakhir Juni 02, 2010, 01:41:28 PM
oleh galihutomo
19 Jawaban
15636 Dilihat
Tulisan terakhir Oktober 04, 2010, 08:23:27 AM
oleh The Houw Liong
0 Jawaban
968 Dilihat
Tulisan terakhir Januari 30, 2015, 07:14:54 PM
oleh Risma098

Copyright © 2006-2014 Forum Sains Indonesia