Forum Sains Indonesia




*

Artikel Sains

Aku Cinta ForSa

ForSa on FB  ForSa on Twitter

Pranala Luar

ShoutBox!

Last 10 Shouts:

ariess

September 18, 2014, 03:16:41 PM
halo ada yang onlen ?
 

Sandy_dkk

September 18, 2014, 10:55:16 AM
nulisnya kepotong y? mending tulis di forum aja.
intinya kalo soal kayak gitu buat aja persamaan aljabarnya.

irapurnamasari

September 18, 2014, 08:48:31 AM
Tolong di bantu y teman.
Sebuah bilangan terdiri atas dua angka angka puluhan 2 lebih besar dari pada tiga kali angka satuan
Jika kedua angka ditukar letaknya
Diperoleh  bilangan baru yang 13 lebih kecil dari pada bilangan mula  :
 

Sandy_dkk

September 17, 2014, 03:21:04 PM
tulis saja langsung soalnya.
koordinat apa yang diketahui? kalau koordinat busur, minimal harus diketahui 3 koordinat.

Nursaadah

September 16, 2014, 05:41:54 PM
halooo
temannn...z punya pertanyaan nih ...bgmn mencari panjang busur sebuah lingkaran jika yang di ketahui titik koordinat ???

iyon7

September 16, 2014, 09:56:49 AM
gimana sih cara bertanya ato buat diskusi
 

LabSatu

September 05, 2014, 04:47:59 PM
Halooo,, salam kenal semua dari labsatu

UlfaSeptilia

September 05, 2014, 03:26:53 PM
Selamat sore teman2 yang disini, saya mau tanya soal cisco. kalau ACL pakainya Static Routing bisa gak yah? atau harus EIGRP ama OSPF yah? Makasih sebelumnya
 

Sandy_dkk

Agustus 31, 2014, 01:36:12 PM
bukan rumit kang Farabi, tapi memang tidak bisa.

peterkusuma

Agustus 25, 2014, 10:03:23 PM
Teman2, ada yg tau kelarutan aluminium klorida dalam benzena ga?
Thx

Show 50 latest

Penulis Topik: Integral  (Dibaca 5199 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline Sky

  • Dosen
  • ****
  • Tulisan: 473
  • IQ: 36
  • Gender: Pria
    • Lihat Profil
Re: Integral
« Jawab #15 pada: Agustus 22, 2011, 12:29:48 PM »
itu link om kbh kepotong...
mestinya ini nih:
http://www.wolframalpha.com/input/?i=integral+x^x+dx

Itu emang indefinite integral, jadi dinyatakan sebagai deret saja...
Cara ngedapetinnya emang pake parsial ko...

Offline Balya

  • Profesor
  • *****
  • Tulisan: 552
  • IQ: 13
  • Gender: Pria
  • Buku lebih berat dari emas
    • Lihat Profil
Re: Integral
« Jawab #16 pada: Agustus 22, 2011, 10:31:43 PM »
itu link om kbh kepotong...
mestinya ini nih:
http://www.wolframalpha.com/input/?i=integral+x^x+dx

Itu emang indefinite integral, jadi dinyatakan sebagai deret saja...
Cara ngedapetinnya emang pake parsial ko...

gimana tuh om?
???
aku akan mengenalkan pendahulu ku lagi pada dunia dan akan mengikuti mereka.

Offline trfrm

  • Mahasiswa
  • **
  • Tulisan: 20
  • IQ: 2
    • Lihat Profil
Re:Integral
« Jawab #17 pada: Pebruari 25, 2013, 04:40:31 PM »
integral e^(x.lnx) dx  ;D

Permisi ... .  Salam kenal ... . :)

Mula-mula kita per-deret-pangkat-kan dahulu e^{x\ln{x}\equiv{x^x}} ... , yaitu

x^x=\sum_{j=0}^\infty\frac{1}{j!}\,\left(\frac{d^j}{dy^j}(y^y)\right)_{y\rightarrow{h}}(x-h)^j

dengan h merupakan suatu bilangan nyata selain nol ... , sehingga x^x berbentuk polinom ... , yang tentu saja dapat di-integral-kan ... .

\int{x^x}dx=\int\sum_{j=0}^\infty\frac{1}{j!}\,\left(\frac{d^j}{dy^j}(y^y)\right)_{y\rightarrow{h}}(x-h)^j\,dx
=\sum_{j=0}^\infty\frac{1}{j!}\,\left(\frac{d^j}{dy^j}(y^y)\right)_{y\rightarrow{h}}\int(x-h)^j\,dx
=\sum_{j=0}^\infty\frac{1}{(j+1)!}\,\left(\frac{d^j}{dy^j}(y^y)\right)_{y\rightarrow{h}}(x-h)^{j+1}+\textrm{tetapan} ... .


Offline mhyworld

  • Profesor
  • *****
  • Tulisan: 1380
  • IQ: 43
  • Gender: Pria
  • .start with the end in mind.
    • Lihat Profil
Re:Integral
« Jawab #18 pada: Maret 05, 2013, 09:49:16 PM »
Permisi ... .  Salam kenal ... . :)

Mula-mula kita per-deret-pangkat-kan dahulu e^{x\ln{x}\equiv{x^x}} ... , yaitu

x^x=\sum_{j=0}^\infty\frac{1}{j!}\,\left(\frac{d^j}{dy^j}(y^y)\right)_{y\rightarrow{h}}(x-h)^j

dengan h merupakan suatu bilangan nyata selain nol ... , sehingga x^x berbentuk polinom ... , yang tentu saja dapat di-integral-kan ... .

\int{x^x}dx=\int\sum_{j=0}^\infty\frac{1}{j!}\,\left(\frac{d^j}{dy^j}(y^y)\right)_{y\rightarrow{h}}(x-h)^j\,dx
=\sum_{j=0}^\infty\frac{1}{j!}\,\left(\frac{d^j}{dy^j}(y^y)\right)_{y\rightarrow{h}}\int(x-h)^j\,dx
=\sum_{j=0}^\infty\frac{1}{(j+1)!}\,\left(\frac{d^j}{dy^j}(y^y)\right)_{y\rightarrow{h}}(x-h)^{j+1}+\textrm{tetapan} ... .



maksudnya pakai deret Taylor, ya? Jadi nilainya cuma bisa dihitung secara numerik (pendekatan).
http://en.wikipedia.org/wiki/Taylor_series
« Edit Terakhir: Maret 05, 2013, 09:51:21 PM oleh mhyworld »
once we have eternity, everything else can wait

Offline trfrm

  • Mahasiswa
  • **
  • Tulisan: 20
  • IQ: 2
    • Lihat Profil
Re:Integral
« Jawab #19 pada: Maret 06, 2013, 01:26:34 AM »
Ya begitulah ... .  Habis mau bagaimana lagi ... .  :(  Tetapi konon, nilai dari deret pangkat (deret Taylor) itu eksak (bukan pendekatan) apabila kita benar-benar menjumlahkannya sampai suku ke-tak-hingga ... . Hanya saja ... apabila kita hanya mengambil beberapa suku dari deret tersebut, maka barulah hasilnya merupakan pendekatan numerik ... .

Sebagai contoh ... , nilai \sum_{j=0}^\infty{\frac{x^j}{j!}} itu eksak, yaitu e^x ... , sedangkan nilai \sum_{j=0}^{100}{\frac{x^j}{j!}} (misalnya) itu barulah pendekatan dari e^x ... .

Offline Bahalan

  • Mahasiswa
  • **
  • Tulisan: 30
  • IQ: 5
  • ForSa!
    • Lihat Profil
Re:Integral
« Jawab #20 pada: Mei 22, 2013, 12:39:36 PM »
Alternatif lain dengan menggunakan integrasi parsial secara suksesif. Rumus standar integral u dv = uv - integral v du. Dalam hal ini u kita ambil x^x dan dv =dx. Kita akan memperoleh pada langkah pertama v = x. Kemudian kita mererapkan integrasi parsial lagi pada suku integral v du. Maka pada langkah kedua kita perolah v = 1/2 x^2 dan d/dx (x^x). Pada langkah ke n kita akan memperoleh v = 1/n! x^n dan du/dx = turunan ke n untuk x^x.
Ternyata dengan menerapkan metode ini hasilnya akan sama dengan ekspansi Taylor yang diusulkan oleh trfrm.

 

Topik Terkait

  Subyek / Dimulai oleh Jawaban Tulisan terakhir
integral

Dimulai oleh korewa « 1 2 » Matematika SMU

17 Jawaban
10125 Dilihat
Tulisan terakhir Juni 08, 2009, 01:11:26 PM
oleh Sky
Integral

Dimulai oleh Fachni Rosyadi Matematika SMU

3 Jawaban
2592 Dilihat
Tulisan terakhir September 03, 2010, 11:59:52 PM
oleh PocongSains
7 Jawaban
2415 Dilihat
Tulisan terakhir Oktober 27, 2010, 10:42:24 AM
oleh laZr
2 Jawaban
1174 Dilihat
Tulisan terakhir Desember 06, 2011, 04:20:07 PM
oleh mhyworld
7 Jawaban
2419 Dilihat
Tulisan terakhir Pebruari 14, 2012, 10:36:42 AM
oleh strykerider

Copyright © 2006-2014 Forum Sains Indonesia