-
Tutorial Memberikan Support Sesama Konten Kreator Facebook...
oleh olhdtsmg2
[September 14, 2023, 07:33:31 PM] -
Account Turnitin Student No Repository (Actived) Activation...
oleh olhdtsmg2
[Agustus 31, 2023, 10:05:47 PM] -
Hallo Salam Kenal
oleh kimmylie
[Agustus 18, 2023, 06:11:29 AM] -
Training Online Panel Data Regression Free With Stata,...
oleh olhdtsmg2
[Agustus 17, 2023, 11:42:56 AM] -
Workshop Panel Data Regression Free With Stata, Eviews,...
oleh olhdtsmg2
[Agustus 12, 2023, 09:48:10 AM]
Anggota
- Total Anggota: 27,811
- Latest: asiaphone12
Stats
- Total Tulisan: 139,653
- Total Topik: 10,405
- Online today: 51
- Online ever: 1,582
- (Desember 22, 2022, 06:39:12 AM)
Pengguna Online
Guests: 38
Total: 38
Naiknya harga minyak mentah boleh jadi membawa berkah besar bagi negara-negara pengekspor minyak seperti OPEC. Namun di lain pihak, terutama negara-negara industri maju, kenaikan harga minyak dapat membawa bencana besar bagi perekonomian mereka. Sumber bahan bakar alternatif yang andal selain bahan bakar fosil ini memang merupakan impian bagi mereka.
Tidak dapat dimungkiri bahwa bahan bakar minyak (BBM) merupakan sumber energi terbesar yang dimanfaatkan manusia, terutama untuk masalah transportasi. Namun tidak dapat dimungkiri pula bahwa BBM akan segera habis jika pola kenaikan pemakaian BBM seperti saat ini tidak dapat diubah. Di sisi lain, dengan
Sementara itu, teknologi energi terbarukan yang ramah lingkungan seperti energi surya, air, angin, pasang surut, biomassa, dan geotermal sudah secara masif dikembangkan. Namun kelemahan energi jenis ini adalah pada masalah efisiensi serta cadangan sumber yang bervariasi di atas permukaan Bumi. Beberapa di antaranya seperti energi surya, air dan angin, sangat dipengaruhi oleh pola cuaca setempat. Dengan teknologi yang ada saat ini, energi-energi tersebut dapat memenuhi kebutuhan negara-negara dengan populasi yang tersebar namun sulit untuk menyediakan energi bagi populasi padat terkonsentrasi dengan kebutuhan energi per jiwa cukup tinggi seperti di negara-negara industri.
Energi nuklir fisi (nuklir konvensional yang ada sekarang) dapat dianggap sebagai solusi intermediate karena cadangan bahan bakarnya cukup berlimpah. Namun, isu radiasi serta limbah nuklir yang menjadi sangat sensitif di masyarakat (serta sering dipolitisir) telah secara signifikan menekan perkembangan teknologi jenis ini. Apalagi jika dikaitkan dengan isu terorisme, tampaknya masa depan energi nuklir fisi sulit diramalkan menjadi baik.
Reaksi fusi
Reaksi fusi merupakan reaksi yang membuat Matahari serta bintang-bintang di jagat raya ini bercahaya. Reaksi jenis ini hanya dapat berlangsung jika temperatur, tekanan, dan kerapatan bahan bakar ekstrem tinggi. Di dalam inti Matahari, misalnya, temperatur 15-20 juta derajat Celsius, tekanan gravitasi sekitar seperempat triliun atmosfer, serta kerapatan yang mencapai delapan kali kerapatan emas, telah menjamin berlangsungnya fusi inti-inti hidrogen menjadi inti helium secara kontinu selama miliaran tahun. Temperatur dan tekanan ekstrem tersebut diperlukan dalam reaksi fusi untuk mengatasi
Tentu saja kondisi tersebut sulit dicapai di atas permukaan Bumi sehingga proses lain harus dicari. Nukleus-nukleus ringan yang memiliki energi ikat rendah cenderung untuk berfusi menjadi nukleus yang lebih berat karena energi ikatnya lebih tinggi. Tingginya energi ikat menggambarkan kestabilan nukleus. Sebaliknya, dengan alasan yang sama, nukleus berat (misalnya 239 Pu) cenderung untuk berfisi (pecah) menjadi nukleus-nukleus yang lebih ringan.
Salah satu reaksi fusi yang saat ini serius dipertimbangkan adalah penggabungan nukleus deuterium (D) dan tritium (T). Reaksi DT ini memiliki peluang lebih besar dibandingkan dengan reaksi DD atau Da (a adalah nukleus helium). Selain itu, cadangan bahan bakar (D dan T) sangat berlimpah. Deuterium dapat diekstraksi dari air melalui metode elektrolisis. Setiap satu meter kubik air mengandung 30 gram deuterium, sehingga jika seluruh listrik di muka Bumi ini dibangkitkan oleh reaktor fusi, maka cadangan deuterium akan mencukupi kebutuhan lebih dari sejuta tahun. Tritium tidak tersedia secara alami, melainkan harus diproduksi (dibiakkan) dalam reaktor dengan litium. Litium adalah metal yang paling ringan yang cukup banyak ditemukan pada kulit Bumi serta dalam konsentrasi rendah di lautan. Cadangan litium yang telah diketahui hingga saat ini dapat mencukupi kebutuhan selama lebih dari 1.000 tahun.
Litium akan dibuat menjadi selimut (blanket) reaktor seperti diperlihatkan pada Gambar. Reaksi fusi DT akan menghasilkan a dan neutron n. Neutron ini akan bergerak keluar plasma (atom-atom helium dan tritium yang telah kehilangan elektron akibat temperatur sangat tinggi) dan diserap oleh selimut litium yang selanjutnya menghasilkan T dan a. Kedua jenis reaksi tersebut berlangsung bergantian menghasilkan energi yang dapat diserap oleh dinding reaktor.
D + T --> a + n + energi
n + Li --> a + T + energi
Keuntungan lain reaktor fusi adalah rendahnya problem sampah nuklir. Dari semua bahan bakar fusi hanya tritium yang radioaktif dengan waktu paruh (half life) 12,5 tahun. Sampah radioaktif yang serius di sini hanyalah material dinding reaktor yang menjadi radioaktif karena dihujani oleh partikel neutron. Namun radioaktivitas yang ditimbulkan akan "cepat sekali" dalam kasus terburuk kurang dari 100 tahun. Bandingkan dengan sampah reaktor fisi konvensional yang tetap radioaktif setelah jutaan tahun. Dengan demikian, mayoritas sampah fusi dapat dikubur tidak terlalu dalam dan relatif dengan cepat dilupakan.
Selain itu, reaksi fusi secara inheren sangat aman. Kegagalan dalam bentuk apa pun akan cepat mengontaminasi plasma dalam reaktor yang berakibat padamnya reaksi fusi. Tidak ada reaksi berantai di sini yang dapat tumbuh secara eksponensial akibat kegagalan pengendalian titik kritis seperti pada reaktor fisi.
Dari penjelasan tersebut tampak bahwa reaktor fusi merupakan pembangkit energi (listrik ataupun termal) impian. Tidak ada emisi CO atau CO2 dan dampak lingkungannya jauh di dalam batas toleransi. Meski demikian masih banyak problem yang harus dipecahkan ilmuwan sebelum reaktor fusi dapat beroperasi secara komersial.
Sumber : Kompas (23 Juli 2004)
Bacaan lanjutan :
http://en.wikipedia.org/wiki/Cold_Fusion
http://en.wikipedia.org/wiki/Nuclear_fusion
http://www.bustertests.co.uk/answer/nuclear-fission-and-nuclear-fusion/
tapi yang jadi pertanyaan apakah indonesia siap untuk mengembangkan teknologi tersebut?karena melihat etos kerja bangsa indonesia sangat dimungkinkan berdampak sangat buruk, bahkan bukan kemanfaatan yang didapat melainkan kerugian secara struktural akan terus bertambah di indonesia nantinya
let's think about the solution