Member baru? Bingung? Perlu bantuan? Silakan baca panduan singkat untuk ikut berdiskusi.

Welcome to Forum Sains Indonesia. Please login or sign up.

September 20, 2024, 03:48:40 AM

Login with username, password and session length

Topik Baru

Artikel Sains

Anggota
Stats
  • Total Tulisan: 139,653
  • Total Topik: 10,405
  • Online today: 41
  • Online ever: 1,582
  • (Desember 22, 2022, 06:39:12 AM)
Pengguna Online
Users: 0
Guests: 28
Total: 28

Aku Cinta ForSa

ForSa on FB ForSa on Twitter

1 soal olimpiade SMP

Dimulai oleh Gen-I-uSy, Mei 11, 2009, 11:27:45 PM

« sebelumnya - berikutnya »

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Gen-I-uSy

jika x = \frac1{1^2} + \frac1{3^2} + \frac1{5^2} + ...
y = \frac1{1^2} + \frac1{2^2} + \frac1{3^2} + ...
maka y dalam x sama dengan .....
(maksudnye y itu sama dengan berapa x)

nash

"Perhaps it is good to have a beautiful mind, but an even greater gift is to discover a beautiful heart"

(John Nash, "A Beautiful Mind")

nandaz

...hehehe soal smp ya

liat soalnya bisa di buat pola seperti ini...

X = 1/( 2n - 1)2
Y = 1/ n2
dengan syarat n = bil bulat positif

nah, nash selesaikan deh...pasti bisa............
starting by doing what is necessary, then what is possible and suddenly you are doing the impossible...
\dia\cal{ANONYMOUS}\cl

nash

ntar ja ya,

lagi sibuk

ntar malem ja
"Perhaps it is good to have a beautiful mind, but an even greater gift is to discover a beautiful heart"

(John Nash, "A Beautiful Mind")

nash

jawabanku:

y = [(2x)/(x + akar x)]^2

tapi kayaknya c ngaco
"Perhaps it is good to have a beautiful mind, but an even greater gift is to discover a beautiful heart"

(John Nash, "A Beautiful Mind")

Mtk Kerajaan Mataram


nash

"Perhaps it is good to have a beautiful mind, but an even greater gift is to discover a beautiful heart"

(John Nash, "A Beautiful Mind")

Mtk Kerajaan Mataram

x = \frac1{1^2} + \frac1{3^2} + \frac1{5^2} + ...
y = \frac1{1^2} + \frac1{2^2} + \frac1{3^2} + ...

Maka
y = \frac1{1^2} + \frac1{3^2} + \frac1{5^2}+ ...+ \frac1{2^2}+ \frac1{4^2}+ \frac1{6^2}+...

==> y=\frac1{1^2} + \frac1{3^2} + \frac1{5^2}+ ...+ \frac1{2^2}[\frac1{1^2}+ \frac1{2^2}+ \frac1{3^2}+...]
==> y=x+\frac1{4}y ==> y = \frac{4}{3}x

Gen-I-uSy

emang pinter ni Mtk Kerajaan Mataram....
oh, ya coba lagi y soal deret juga
klik topik ini http://www.forumsains.com/matematika-smu/iseng-iseng-deret-harmonik-(mungkin)/

M101A

wah, makasih nich,
tambah wawasan lah..

zerofreedom

Kutip dari: Mtk Kerajaan Mataram pada Mei 16, 2009, 04:19:16 PM
x = \frac1{1^2} + \frac1{3^2} + \frac1{5^2} + ...
y = \frac1{1^2} + \frac1{2^2} + \frac1{3^2} + ...

Maka
y = \frac1{1^2} + \frac1{3^2} + \frac1{5^2}+ ...+ \frac1{2^2}+ \frac1{4^2}+ \frac1{6^2}+...

==> y=\frac1{1^2} + \frac1{3^2} + \frac1{5^2}+ ...+ \frac1{2^2}[\frac1{1^2}+ \frac1{2^2}+ \frac1{3^2}+...]
==> y=x+\frac1{4}y ==> y = \frac{4}{3}x

masih bingung om, itu 1/4y darimana ya ?:D

nandaz

...dari sini kali
Kutip \frac1{2^2}[\frac1{1^2}+ \frac1{2^2}+ \frac1{3^2}+...]

\frac{1}{2^2} kan sama dengan \frac{1}{4}
starting by doing what is necessary, then what is possible and suddenly you are doing the impossible...
\dia\cal{ANONYMOUS}\cl