Gunakan MimeTex/LaTex untuk menulis simbol dan persamaan matematika.

Welcome to Forum Sains Indonesia. Please login or sign up.

Agustus 19, 2022, 09:16:19 AM

Login with username, password and session length

Topik Baru

Artikel Sains

Anggota
  • Total Anggota: 26,765
  • Latest: KlausKep
Stats
  • Total Tulisan: 139,633
  • Total Topik: 10,390
  • Online today: 41
  • Online ever: 441
  • (Desember 17, 2011, 09:48:51 AM)
Pengguna Online
Users: 0
Guests: 27
Total: 27

Aku Cinta ForSa

ForSa on FB ForSa on Twitter

Soal Teori Bilangan untuk Pemula

Dimulai oleh Mtk Kerajaan Mataram, Juni 14, 2009, 06:13:02 AM

« sebelumnya - berikutnya »

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Nabih

Kutip dari: Mtk Kerajaan Mataram pada Juni 14, 2009, 06:13:02 AM
3. Jika GCD(a,n) =1, maka bilangan asli terkecil, katakanlah k yang memenuhi
    a^k \equiv 1(mod n) disebut dengan 'order perkalian (multiplicative order)'
    dari [a] dalam group Z_n^{\times}. (Contoh : GCD(3,5)=1 dan
    3^4 =81 \equiv 1(mod 5) maka order perkalian [3] dalam group Z_5^{\times} adalah 4.
    Sekarang tentukan order perkalian dari  (1 poin)
    (i)  [5] dan [11] dalam group Z_{17}^{\times}
    (ii) tiap elemen dari group Z_8^{\times} (yakni [1],[2],...,[7])



Z_n^{\times} maksudnya apaan

Mtk Kerajaan Mataram

Kutip dari: Nabih pada Juni 22, 2009, 01:55:04 PM
Z_n^{\times} maksudnya apaan

Z_n^{\times} adalah himpunan beranggotakan [1],[2],...,[n-1] yang didalamnya berlaku operasi perkalian ("x").
Contoh :
Z_5^{\times} beranggotakan [1],[2],[3],[4].
[2]x[2]=[4] karena 2x2 (mod 5)=4(mod 5)
[2]x[3]=[1] karena 2x3 (mod 5)=1(mod 5)
Perkaliannya bersifat tertutup karena hasil perkaliannya juga anggota Z_5^{\times}.
Z_n^{\times} bersama operasi biner perkalian kongruensi merupakan semigroup (syarat adanya invers pada group dihilangkan).
Jika p merupakan bilangan prima maka Z_p^{\times} merupakan group multiplikatif yang anggota-anggotanya kelas-kelas kongruensi [1],[2],...,[n-1].
Kita review sebentar tentang group :
Group adalah sebuah himpunan G bersama sebuah operasi biner * yang memenuhi sifat :
- tertutup : utk setiap a,b anggota G maka a*b juga anggota G
- assosiatif : utk setiap a,b,c anggota G maka a*(b*c)=(a*b)*c
- ada elemen identitas e dalam G sehingga utk setiap a anggota G e*a=a*e=a
- untuk setiap a anggota G ada b anggota G sehingga a*b=e (invers).

Kholil

Gimana cara nentuin elemen identitasnya ???

dari group tersebut

Nabih

Kutip dari: Kholil pada Juni 23, 2009, 10:10:34 AM
Gimana cara nentuin elemen identitasnya ???

dari group tersebut
Wah! kok pertanyaannya sama dengan saya?

Mtk Kerajaan Mataram

Lo yaa disini elemen identitasnya [1]. karena untuk setiap x anggota{[1],[2],...,[p-1]}, maka 1.x=x.1=x (mod p).

Nabih

 untuk semua Z_n^{\times} kah?

@mtk utang IQ saya dah lunas, lihat postingan saya tentang pembuktian bahwa bilangan prima berbentuk 6n+1dan6n-1

Mtk Kerajaan Mataram

" untuk setiap x anggota{[1],[2],...,[n-1]}, maka 1.x=x.1=x (mod n) jelas bahwa untuk setiap n bilangan asli sifat ini selalu terpenuhi.
Yang invers tidak selalu terpenuhi, hanya untuk n bilangan prima saja yang menjamin bahwa setiap anggota Z_n^{\times} punya invers. 
Contoh untuk Z_{17}^{\times} adalah sebagai berikut :

Elemen Order    Invers
[1]        1          [1]
[2]        8          [9]
[3]       16          [6]
[4]        4          [13]
[5]       16          [7]
[6]       16          [3]
[7]       16          [5]
[8]        8           [15]
[9]        8           [2]
[10]     16           [12]
[11]     16           [14]
[12]     16           [10]
[13]      4            [4]
[14]     16            [11]
[15]      8             [8]
[16]      2             [16]

Saya ambil misal elemen [11] punya invers [14] karena 11\times 14 = 154 \equiv 1(mod17).
Dan [11] punya order 16 karena 11^{16}=45949729863572161 \equiv 1(mod 17).

Nabih

Kalau itu saya tahu, saya hanya asing dengan notasinya, saya masih perlu buka buku lagi nich!

Nabih

Setelah belajar struktur aljabar, akhirnya saya mengerti maksud pertanyaanya mas Mataram
3. a
5^n = \equiv 1(mod 17)
11^n = \equiv 1(mod 17)
pake fermat kan dua-duanya 16

3.b
1^n = \equiv 1(mod 8), order [1]= 1
2^n = \equiv 1(mod 8), order [2]= ga ada
3^n = \equiv 1(mod 8), order [3]= 2
4^n = \equiv 1(mod 8), order [4]= ga ada
5^n = \equiv 1(mod 8), order [1]= 2
6^n = \equiv 1(mod 8), order [6]= ga ada
7^n = \equiv 1(mod 8), order [1]= 2

kalo yang ga ada, jelas, itu tak saling prima dengan 8, tapi kenapa yang lain banyak yang 2, aa yang bisa jawab?

Mtk Kerajaan Mataram

@Nabih
Syukurlah sudah tahu maksudnya, jawabannya sudah benar, +1 IQ.

Kutip dari: Nabih pada Desember 07, 2009, 08:34:05 PM
kalo yang ga ada, jelas, itu tak saling prima dengan 8, tapi kenapa yang lain banyak yang 2, aa yang bisa jawab?
Hayo silahkan selidiki...

Nabih

4. Tentukan order dari Z_a^{\times}xZ_b^{\times}xZ_c^{\times}
a. Terhadap perkalian
b. Terhadap penjumlahan
c. Terhadap pembagian
d. Terhadap pengurangan
e. Terhadap operasi pangkat

Mtk Kerajaan Mataram

@Nabih
Ehh..saya kok aneh dengan soal ini yaa....?
Z_a^{\times}xZ_b^{\times}xZ_c^{\times} adalah group yang merupakan direct product dari group Z_a^{\times}, Z_b^{\times}, dan Z_c^{\times}.
Order dari suatu group tidak lain adalah banyaknya anggota dari group tersebut, jadi tidak terkait dengan terhadap operasi perkalian atau penjumlahan.
Order dari suatu elemen yang terkaitkan dengan operasi biner,
misal order dari elemen a terhadap perkalian adalah m jika a^m=1, dimana 1 adalah identitas perkalian (elemen netral pada perkalian),
atau order dari a terhadap penjumlahan adalah m jika \underbrace{a+a+ \cdots +a}_{ sebanyak-m}=0, dimana 0 adalah identitas penjumlahan (elemen netral untuk penjumlahan).
Kita juga tahu tidak ada elemen netral untuk pembagian dan pengurangan.

Nabih

bukanya elemen netral pada penjumlahan dan pengurangan sama2 nol
sedangkan pada perkalian dan pembagian satu, lalu soal itu saya kutip dari OST-DIY dan saya juga tidak bisa mengerjakannya